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PREFACE 

The work described i n  t h i s  report was performed by the Mission Ar~alys is  

Divis ion of the J e t  Propulsion Laboratory. 
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Abstract 

This report  descr ibes  t he  use of a sequent ial  least squares 

f i l t e r  i n  t h e  o r b i t  determination f o r  t h e  Mariner Venus-Mercury 

(Mariner 10) spacecraf t .  The o r b i t  determination s t r a t egy  ou t l i n ing  

the use of both the sequent ia l  f i l t e r  and a conventional batch f i l t e r  

is given. Highlighted a r e  t he  mission events from launch t o  t he  f i r s t  

Mercury encounter with emphasis on the  sequentia' l t e r  perfornrance. 

Advantages tcj t h e  mtssion derived from the sequel Aal t'ilrer a r e  

pointed out. 
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Performance of t h e  Square Root Information F i l t e r  
f o r  Navigation of t h e  Mariner 10 Spacecraft  

The f l i g h t  of Mariner 10  was launched i n  November 1973. It 

encountered the  p lane t  Venus i n  February 1974, and the  grav i ty  a s s i s t  

of t h a t  flyby propelled t h e  spacecraf t  towards .Mercury. It  encountered 

. Mercury i n  l a t e  March 1974, and due t o  t he  2:l r a t i o  of t he  spacecraf t  

he l i ocen t r i c  per iod t o  t h a t  of Mercury, i t  was ab l e  t o  twice again encounter 

Mercury i n  September 1974 and i n  March 1975. A t  each of these  four  

planetary encounters a wealth of s c i e n t i f i c  da ta  was produced including 

thousands of closeup t e l ev i s ion  p i c tu re s  of t he  t i ny  p lane t  Mercury. 

One impqrtant ingredient  in t h e  success  of t h i s  mission, t he  f i r s t  

spacecraf t  t o  achieve mult iple  planetary encounters,  was highly accurate  

navigation. I n  performing the  navigat ion,  extensive use was made of a batch 

sequential f i l t e r  and smoother, again,  a f i r s t  fo r  i n t e rp l ane t a ry  spacecraf t  

navigation. This report  w i l l  concentrate  on the  use of the  batch sequent ia l  

f i l t e r  during the  f l i g h t ,  the  s t r a t e g i e s  followed, s t rengths  and weaknesses 

of the  f i l t e r ,  comparisons o f  the  f i l t e r  with a batch f i l t e r ,  and s p e c i f i c  

contr ibut ions tu t he  mission from the  f i l t e r  . 
Section I h igh l igh t s  c h a r a c t e r i s t i c s  of t he  mission and the  

premissian ana lys i s  t ha t  led t o  the incorporat ion o i  the  sequent ia l  f i l t e r  

i n to  the  mission software.  

Sect ion I1 gives  the o r b i t  determination s t r a t egy  followed i n  using 

both a c l a s s i c a l  l e a s t  squares constant  parameters batch f i l t e r  and the  

new sequent ia l  f i l t e r  which i s  based on a process no ise  model; da t a  sets, 

so lu t ions  sets, and choices of f i l t e r  parameters a r e  discussed. 

Sect ion I11 is  a chronology of the mission navigat ion through the  f i r s t  

Mercury encounter, h igh l igh t ing  the  uses  and advantages of t h e  s equen t i a l  

f i l t e r .  
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Fina l ly ,  i n  Sect ion I V  is a d i scuss ion  of t he  payoffs derived from 

use of t h e  sequent ia l  f i l t e r  and some thoughts on i ts  fu tu re  use. 

The mathematical b a s i s  f o r  t he  design s f  t he  f i l t e r  i s  given i n  

Reference 1. The s p e c i f i c  f i l t e r  and smoother equations used i n  the 

Mariner 10 software a r e  given i n  t h e  Appendix. 

I. Premission Analysis and P l a n n i n ~  

An accuracy ana lys i s  study was conducted p r i o r  t o  t h e  ~ ' . s s i o n  i n  

order  t o  determine the  accurate  c a p a b i l i t i e s  of the  o r b i t  determination 

(O.D.) system. ( see  Reference 3). This study concentrated on t h e  prime 

mission, i .e. ,  up t o  the f i r s t  Mercury encounter. The capab i l i t y  of 

subsequent Mercury encoun tus  was considered, however. 

It w a s  c l e a r  from the  ana lys i s  t ha t  t h e  most c r i t i c a l  period f o r  

o r b i t  determination was the  period determining the  Venus encounter 

conditions.  The reason f o r  concern was the  mu l t i p l i ca t i on  f a c t o r  of 

approximately 1000 tha t  ex is ted  between t h e  Venus and Mercu:ry aiming 

zone e r r o r s .  This l a rge  f a c t o r  was caused by t h e  l a rge  grav i ty  bending 

occurr ing at Venus encounter. This meant t h a t  a 1 kilometer e r r o r  a t  

Venus, i f  uncorrected, would r e s u l t  i n  about a 1000 kilometer e r r o r  a t  

Mercury. 

Four t r a j ec to ry  cor rec t ion  maneuvers 

a t  t en  days a f t e r  launch, t o  remove launch 

(TCM's) were planned : TCMl 

e r r o r s ;  TCM2 a t  18 days p r i o r  

t o  Venus encounter, t o  cont ro l  t he  Venus encounter condi t ions ;  TCM3 at  four 

days a f t e r  Venus encounter, t o  remove Ven, :ncounter e r r o r s ;  and TCM a t  

24 days a f t e r  Venus encounter t o  remove e r r o r s  introduced by il:o expected 

la rge  TCM3 and t o  cont ro l  the Mercury de l ivery .  The o r b i t  determination 
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p r i o r  t o  TCM2 was c r i t i c a l  i n  assur ing  the  accuracy of t h e  Venus encounter. 

Table I presents  l a  e r r o r  e l l i p s e s  i n  t he  Venus encounter plane 

derived from the O.D. during the  long a r c  p r i o r  t o  TChl2. The t a b l e  

is composed of t he  major e r r o r  sources  and t h e  associated . o s i t i o n  e r ro r s .  

Data noise  represents  t h e  da ta  q u a l i t y  of t h e  doppler and range data*. 

The doppler noise is  conservat ively considered at 0.015 hz. ( l a )  o r  

equivalent ly  1 d s e c  fo r  a  60 sec .  count time, and range is considered 

a t  50 meters ( l a ) .  Ephemeris e r r o r ,  here,  is the  e f f e c t  of t h e  Venus 

pos i t ion  uncertainty r e l a t i v e  t o  t he  e a r t h  a t  encounter time. Ef fec t ive  

S t a t i on  Location Er rors  (ESLE) includes unce r t a in t i e s  due t o  t h r ee  fac tors .  

1 )  The uncertainty of s t a t i o n  l oca t i cns  oa t he  ea r th ' s  c r u s t ,  

2) The uncertainty i n  t he  pos i t i on  of t h e  e a r t h ' s  c r u s t  with 

respect  t o  the  e a r t h ' s  cen te r  (ear th  wobble), and 

3) The uncertainty due t o  transmission e f f e c t s  - both i n  t he  e a r t h ' s  

troposphere and ionosphere and charged p a r t i c l e s  i n  space (space 

p l a s m ) .  

The troposphere changes the s i g n a l  path length, and t h e  charged p a r t i c l e s  

change the  group and phase ve loc i ty  of t h e  e l e c t r o m g n e t i c  wave. A l l  of 

these dis turbances appear t o ,  i n  e f f e c t ,  move t h e  loca t ion  of t h e  t rack ing  

s t a t i o n .  

The dominant e r r o r  source a s  shown i n  Table I is the  Non-Gravitational 

Acceleration (=) o f  the  spacecraf t .  These acce le ra t ions  a r e  very small ,  

t yp i ca l l y  on the  order  of ld9 m/sec2. Accelerations of t h i s  s i r e  would 

physical ly  per turb t he  t r a j e c t c r y  by only 3.5 k i lop~ztcus  i n  30 days. 

* 
Doppler and range da ta  a r e  defined and discussed i n  Sect ion XI. 
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However, t he  random time va r i a t i ons  of the  acce lera t ions  make t h e i r  

determination a d i f f i c u l t  problem a t  best .  The a t t i t u d e  cont ro l  valves 

(2 f o r  each ax is )  f i r e  at various r a t e s  and leakage can be caused by 

improper valve sea t ing  due t o  dust  p a r t i c l e s ,  e t c .  Additionally,  any 

unmdeled spacecraf t  configurat ion change can cause a  change i n  so l a r  

pressure.  The e r r o r  shown i n  Table I is t h e  r e s u l t  of modeling the NGA's 

as s tochas t i c  forces* and using a  batch f i l t e r  (which incor rec t ly  assumes 

a l l  parameters a r e  constant over the  e n t i r e  data a r c ) .  

Table I1 presents  t he  same information f o r  the  Mercury encounter. 

Again note  the  dominance of t h e  nongravi tat ional  acce lera t ions .  The -liming 

zone o r  ' sc ience success zone' a t  Mr:cury was about 500 x 200 km., so the 

predicted performance wotlld meet t h a t  ob jec t ive .  Another reason f o r  minimizing 

the Mercury flyby e r r o r  was t o  f l y  c lose  t o  the ' f r e e  re turn  contour1** and 

minimize t h e  f u e l  needed f o r  a  secona Mercury encounter. 

A s  a r e s u l t  of the p re f l i gh t  ana lys is  leading t o  r e s u l t s  such a s  

those shown i n  Table I, the prope!lent tank s i z e  was doubled from a capabi l i ty  

of 60 mlsec t o  a  capabi l i ty  of 120 mlsec. S t i l l ,  s ince about 113 mlsec 

would be needed a t  TCE,; t o  remove the e r r o r  induced by each kilometer o f  miss 

a t  Venus, a  3a e r r o r  a t  Venus would have necess i ta ted  burning a l l  of the 

propel lent  to  cor rec t  the e r r o r  induced and achieve the desired Mercury aim 

point.  There would be no chance fo r  a  seco,~d Mercury encounter. 

* 
The accc lera t ions  were modelled a s  constant over one day, exponentially 
cor re la ted  over time with a  3 day cor re la  i o n  time. The a  p r i o r i  uncer ta in t ies  b were: 0.5 x lo-', 1.75 x lo-', 3.0 x 10- m/sec2 f o r  the three axes. 

* * 
The f r ee  re turn  contour was a locus of p o i n t s ' i n  the Mercury aim plane such 
tha t  an encounter passing through one of these points  would have, a f t e r  
being perturbed by the  p lane t ,  a  he l iocent r ic  period exact ly twice t h a t  
of Mercury. 
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The batch sequent ia l  f i l t e r  was designed and implemented i n  order  

t o  b e t t e r  model the NGA's and reduce t h e  expected e r r o r s  i n  t h e  Venus 

del ivery.  The f i l t e r  formulation m k e s  use of the  square root  information 

est imat ion technology developed a t  the  Jet Propulsion Laboratory and is 

described i n  t h e  Appendix. 

11. Orbit Determination S t r a t e ~  

The primary data  type used f o r  ou t e r  space navigation i s  two-way 

doppler. A radio s igna l  is t ransmit ted from a s t a t i o n  on the  e a r t h  t o  the  

spacecraf t  and retransmit ted t q  t h e  same s t a t i o n  (hence, two-way). Doppler 

data  cons is t s  of a count of t h e  d i f fe rence  between t h e  number of cycles  

received and the  number t ransmit ted over a s p e ~ i f i e d  count i n t e r v a l  (nominally, 

1 minute). This gives a measure of t he  average topocentr ic  ( s t a t i o n  centered) 

range r a t e  over the count i n t e r v a l .  Except for  per iods when the  spacecraf t  

is near a p lane t  where g rav i t a t i ona l  acce l e r a t i on  is high, t he  doppler da ta  can 

be averaged over a longer time (10 t o  20 minutes) and st i l l  contain a l l  the  

information necessary f o r  o r b i t  determination. This allows t h e  information 

t o  be compressed i n t o  fewer da ta  po in ts .  

A second da t a  type, topocentr ic  range, is obtained by measuring the  

time delay f o r  a s i g n a l  t o  t r a v e l  round t r i p  from the  s t a t i o n  t o  t he  space- 

c r a f t  and re turn .  Range data  is  complementary t o  doppler da ta  i n  t he  sense 

t h a t  it  has d i f  f e t e n t  information about the t r a j ec to ry .  Whereas doppler 

da ta  was continuous, a t  the  sample r a t e s  mentioned above, throughout t he  

mission, range da ta  was more sparse  ( t yp i ca l l y  one t o  th ree  po in t s  during 

a s t a t i o n  t rack  of 8 - 1 G  hours, and there  were many days with no range da ta ) .  
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Solut ions were obtained using three  da ta  sets: doppler only,  doppler 

and range, and range only. Consistency of t he  so lu t ions  based upon the  

d i f f e r e n t  sets increased confidence i n  both the da ta  and the  so lu t ions .  

Different  da ta  a r c  lengths  are s e n s i t i v e  t o  d i f f e r e n t  e r r o r  sources.  

ESLE e f f e c t s  and sho r t  term spacecraf t  l eaks  a r e  much more important f o r  

sho r t  a r c s  (2-3 weeks o r  l e s s ) .  Long a r c s  a r e  i n sens i t i ve  t o  ESLE e f f e c t s ,  

but can be degraded by long term spacecraf t  nongravi ta t ional  forces .  Hence 

whenever poss ib le ,  so lu t i ons  were obtained us ing  da t a  from both t h e  longest  

a r c  ava i l ab l e  and a sho r t  a r c  ( t yp i ca l l y  20 days) containing the  most recent  

data .  By t h e  longest a r c  ava i lab le  is meant data  from t h e  most recent  l a rge  

trajectory per turba t ion  (e.g., a TCM) t o  t h e  cur ren t  time. 

Orb i t  determination so lu t ions  were predicated upon a so lu t ion  set based 

upon f i l t e r  models wi th  d i f f e r i n g  lists of parameters. This was done i n  

order  t o  a s se s s  the  cont r ibu t ions  of t he  var iocs  e r r o r  sources a s  wel l  as 

the continuing adequacy of t he  models. A bas ic  consistency among t h e  var ious 

so lu t ions  assured the  l a t t e r .  A so lu t ion  set consis ted of seven so lu t ions  

est imat ing i n  turn.  

a )  The spacecraf t  s t a t e ,  

b) s t a t e  + s t a t i o r  lo?a t ions ,  

c )  s t a t e  + s o l a r  pressure,  

d) s t a t e  + a t t i t u d e  cont ro l  forces ,  

e )  s t a t e  + s t a t i o n  loca t ion  + s o l a r  pressure,  

f )  aame a s  e) + a t t i t u d e  con t ro l ,  

g) a l l  parameters. 

Depending on the proximity t o  a p lane t ,  planetary or  earth-moon mass and 

planetary and earth-moon ephewxides were included i n  g). 
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The so lu t ion  set was run with two f i l t e r s ;  the batch f i i t e r  and the  

sequent ia l  f i l t e r .  Both f i l t e r s  were mechanized using the  numerically s t a b l e  

and accurate  Householder orthogonal transformations.  The mechanization is 

termed the  Square Root Information F i l t e r  (SRIF). This mechanization 

is discussed i n  Reference 1 and more f u l l y  i n  Reference 5. The batch 

f i l t e r  simply included a l l  t he  data  i n  a s ing l e  batch. The sequent ia l  f i l t e r  

had a process noise  model and was ab l e  t o  process sequent ia l ly  a t  a f ixed small 

hatch s i z e  (cf Appendix). 

The sequent ia l  f i l t e r  was run with the  th ree  a x i s  a t t i t u d e  cont ro l  

acce le ra t ions  a s  colored noise s tochas t i c  parameters. A batch s i z e  of one 

day was used normally and co r r e l a t i on  times of from one t o  f i v e  days were 

assumed. (The co r r e l a t i on  ti= va r i a t i on  seemed t o  have l i t t l e  e f f e c t  on the  

2 
performance.) A p r i o r i  sigmas of lo-' m/sec2 and m/sec were used. 

Planetary t a rge t ing  is usual ly  expressed i n  terms of t h e  B-plane. 

The B-plane (Reference 3) is  a plane passing through the cen t e r  of  a t a r g e t  

planet perpendicular t o  t he  incoming asymptote of a spacecraf t .  B-T is the  

i n t e r sec t ion  of the  B-plane with t h e  e c l i p t i c  and B * R  IS a vec tc r  in t he  B-plane 

perpendicular t o  B-T making a r i gh t  handed system R, S ,  T where S is t h e  

incoming ssyagtote  . 

111. The Fl igh t  from Earth t o  Venus t o  Mercury 

The f l i g h t  path from Earth t o  Venus and t o  the  f i r s t  Mercury encounter i s  

I 

shown i n  Figure 1. Also shown i~ the loca t ion  i n  t he  f l i g h t  path of the  th ree  

t r a j ec to ry  ~ c r r e c t i o n  maneuvers. 

When t h e  spacecraf t  was within the  s t rong  grav i ty  f i e l d  of t he  Earth,  

Cts o r b i t  was determined r a t h e r  quickly compared t o  the time r e q u ~ r e d  i n  
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in te rp lane ta ry  space. One day a f t e r  launch when t rack ing  s t a t i o n s  around the  

Earth had supplied t racking data ,  a reasonable 0. D. was o b t a i ~ e d .  This f i t  

was updated over the  next few days and used to  plan TCMl a t  launch p lus  10 days. 

Using doppler and range da ta ,  the one sigma e r r o r  e l l i p s e  i n  t he  

Venus B-plane was about 400 km by 200 km. This was small  compared to  the 

TCMl execution one sigma e r r o r  of 1500 kin. The batch f i l t e r  and sequekitial 

f i l t e r  performance was s i m i l a r  i n  thds phase due t o  the  s t rong  near Earth 

data  and the  s h o r t  time span. 

The mission phase from TCMl t o  TCM2 was the  most c r i t i c a l  f o r  o r b i t  

determination. The accuracy of t he  o r b i t  determined t h e  parameters fo r  

TCM2 which i n  t u rn  determined the Venus del ivery accuracy. Due t o  t he  

geometrv of t h e  swingby t r a j ec to ry  t he re  was a 1 t o  1000 mapping of e r r o r s  

from Venus t o  Mercury. I n  o ther  words, a one kilometer m i s s  a t  Venus mapped 

in to  a one thousand kilometer miss a t  Mercury. 

A t i m s  h i s to ry  of so lu t ions  i n  t he  Venus B-plane is  shown i n  Figure 2 

f o r  batch f i l t e r  so lu t ions ,  and i n  Figure 3 fo r  sequent ia l  f i l t e r  so lu t ions .  

Solut ions f o r  both long and sho r t  da t a  a r c s  a r e  shown f o r  doppler only and 

doppler + range. The long da ta  a r c  is from TCKl (11/13/73) t o  the  date  

shown on the abscissa .  The sho r t  da t a  a r c  is the 20 days preceding the date  

shown on the  absc issa .  A l l  so lu t i ons  shown include t h e  spacecraf t  s t a t e ,  

s o l a r  pressure parameters, and s t a t i o q  loca t ions-  This so lu t ion  s e t  was 

chosen as represen ta t ive ;  o ther  so lu t ion  s e t s  show s i m i l a r  behavior, Note 

t h a t  a l l  of t h e  f i t s  with data  up t o  12/24 showed good agreement. The batch 

f i l t e r  f i t s  wi th  da ta  u? t o  112, however, show a wide s c a t t e r  in  B ' R .  One 

week l a t e r  with da ta  up t o  1/10 the  wide s c a t t e r  is apparent i n  both B * R  and 

J O T  with t he  s h o r t  a r c  doppler so lu t ion  830 km high i n  B * R .  The sequent ia l  
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f i l t e r ,  on t h e  o t h e r  hand, wi th  t h e  except ion of a s h o r t  a r r  s o l u t i o n  high 

i n  B*R, remained remarkably f l a t  t h r o ~ g h o u .  :he e n t i r e  time per iod.  

Some i n s i g h t  i n t o  t h e  s c a t t e r  of s o l u t i o n s  shown i n  Figure 2 and 

t h e  apparent  s t a b i l i t y  o f  t h e  s e q u e n t i a l  f i l t e r  s o l u t i o n s  i n  Figure 3 

can be gained from examining Figure  4. This f i g u r e  is a p l o t  of t h e  space- 

c r a f t  nongrav i ta t iona l  a c c e l e r a t i o n s  a s  represented by t h e  m a g n i t d r  of 

the  smoothed s o l u t i o n  v e c t o r  f o r  t h e  a t t i t u d e  c o n t r o l  acce' --akicns. of 

course ,  t h i s  is simply t h e  a c c e l e r a t i o n  t h a t  t h e  f i l t e r  s e e s ,  i . e . ,  t h a t  

a long t h e  Ear th-spacecraf t  l i n e  of s i g h t .  The f i l t e r  parlmeter; were : 

one day ba tch  s i z e ,  5 day c o r r e l a t i o n  t imes,  and a p r i o r i  sigma? o f  

. x lo-' m/sec2 along each a x i s .  

S i g n i f i c a n t  peaks i n  Figure  4 a r e  numbered. Peak Nos. 1, 2 and 3 

occur on days when r o l l  ca l ibr , - . t ions  were performed. The s p a c e c r a f t  wds 

allowed t o  r o l l  about t h e  s p a c e c r a f t  - sun a x i s  a t  a r a t e  of 40 mintrev 

f o r  6 revs .  This meant t h a t  f o r  4 hours  t h e  s o l a r  p ressure  component 

perpendicular  t o  the  s u n l i n e  was averaged ou t ,  s o  t h e  average a c c e l e r a t i o n  

due t o  t h i s  component was l e s s  f o r  t h e  day. When i t  was f i r s t  no t i ced  

t h a t  t h e  s e q u e n t i a l  f i l t e r  was s e n s i t i v e  t o  t h i s  minute f a r c e ,  t h e  Navigation 

Team members were s n r p r i s e d  and g r a t i f i e d  t h a t  t h e  f i l t e r  and t h e  model were 

performing so  wel l .  

Peak No. 4 occurred on Januar; 4. This  unusually high a c c e l e r a t i o n  .;lawn 

by t h e  f i l t e r  was confirmed by a ramp i n  t h e  doppler  res idua l f  beginning cm 

January 4 and l a s t i n g  f o r  about a day. The t o t a l  doppler s U f t  was about 

-0.01 hz. corresponding t o  a v e l o c i t y  change of 0.6 m l s e c .  Subsequent a n a l y s i s  

of te lemetered l i m i t  cyc le  d a t a  i n d i c a t e d  a p i t c h  a x i s  torque l a s t i n g  f o r  

about 25 hokrs  on January 4 and 5.  It was c a l c u l a t e d  t h a t  a v a l v e  l e a k  
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l a r g e  enough t o  cause t h e  observed torque and t h e  observed v e l o c i t y  change 

would have been l e s s  than 0.9 grams of gas expended. This  is coo smal l  t c  

be detected by t h e  gas  comsumption te lemetry .  

Here i s  an example of a s p a c e c r a f t  nongrav i ta t iona l  f o r c e  (a gas  

l eak)  t o o  smal l  t o  be seen by te lemetry  bu t  l a r g e  enough t o  e f f e c t  t h e  

orb! t de te rmina t ion  ( the  s c a t t e r  of s o l u t i o n s  shown i n  Figure 2) .  The 

s e q u e n t i a l  f i l t e r  modelled t h e  d i s tu rbance  b e a u t i f u l l y  and provided a 

s t a b l e  Venus B-plane s o l u t i o n  t o  use  i n  t h e  determinat ion of t h e  parameters 

f o r  TCM2. 

Peaks 5 and 6 have no easy explanat ion.  Peak 5 is probably a f i l t e r  

induced damping t o  f i t  of  peak 4 and peak 6 is  probably another  SF - e c r a f t  

l eak .  

A f t e r  TCM2, O.D. s o l u t i o n s  were made every two days i n  o r d e r  t o  get  a r a p i d  

determination of t h e  t r a j e c t o r y .  Had TCM2 n o t  been s u c c e s s f u l  t h e r e  w a s  

s t i l l  time t o  do another  ma3el:ver p r i o r  t o  t h e  Venus encounter.  Here t h e  

batch and s e q u e n t i a l  f i l t e r  gave s i m i l a r  r e s u l t s  over  t h e  one week per iod.  

Figure 5a shows t h e  s o l u t i o n s  i n  t h e  Venus B-plane f o r  3, 5 and 7 day a r c s .  

On January 28, one week before  Venus encounter,  t h e  s p a c e c r a f t  

developed a s e r i o u s  problem. The r o l l  gyros began o s c i l l a t i n g  a t  a rapid  

r a t e ,  causing t h e  r o l l  p o s i t i o n  j e t s  t o  f i r e  a t  t h e i r  maximum r a t e s .  The 

immediate e f f e c t  was a l a r g e  consumption of cold n i t rogen  used as a t t i t u d e  

c o n t r o l  gas (0.54 kg. i n  79 minutes) bezore t h e  problem was diagnmed and t h e  

gyros turned o f f .  The t h r u s t  imbalance i n  t h e  a t t i t u d e  c o n t r o l  l e t s  imparted 

a fo rce  on the  spacecra f t .  The doppler pseudores iduak* ind ica ted  a 

doppler s h i f t  of 0.13 hz. o r  a r a d i a l  v e l o c i t y  change of 8.5 d s e c  i n  79 minutes, 

* 
observed-computed va lues  
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hence the  r a d i a l  acce le ra t ion  was 1.73 x 10 m/sec . This was a l a rge  

~ w u g h  acce le ra t ion  to  have two e f f e c t s :  1) t h e  O.D. data  a r c s  had t o  be 

r e s t a r t ed ,  and 2) the  t r a j ec to ry  was changed thus a l t e r i n g  t h e  Venus 

B-plane posi t ion.  It was suspected t h a t  a t  the  time t h a t  rhe unseen 

component of t he  acce le ra t ion  vector  could have been l a rge  enough t o  move 

the  t r a j e c t o r y  up t o  100 km i n  t he  Venus B-plane.. That s i z e  e r r o r  a t  

Venus would have se r ious ly  degraded the science r e tu rn  a t  Mercury. 

After  the  gas acce le ra t ion  on January 28, sho r t  a r c  f i t s  were again 

made every two days. Figure 5b shows these so lu t ions  f o r  3, 5 and 7 days. 

Also shown is the a c t u a l  t r a j ec to ry  point  determined a f t e r  the  Venus flyby.* 

By comparing these so lu t ions  with those cf the previous week, i t  is  seen 

tha t  the January 28 acce le ra t ion  moved the  t r a j e c t o r y  only about 15 km i n  the  

B-plane. This number is cons i s t en t  with t h a t  obtained p o s t f l i g h t  by solving 

f o r  the acce le ra t ion  and analyzing the spacecraf t  telemetry giving gas usage 

and torques. 

Also shown i n  Figure 5 i s  t h e  desired aim point  and the  a c t ~ a l  aim 

point .  These a r e  d i f f e r e n t  because the spacecraf t  had d i s c r e t e  t u rn  and 

burn time capab i l i t i e s .  The ac tua l  aim point  was the c lo se s t  r ea l i zab l e  

aim point  t o  the desired point .  The proximity of the flyby po in t  t o  the  

desired aim point  (17  km) is renrarkable. It is much smaller  than the  

p r e f l i g h t  s t a t i s t i c s  shown i n  Table I indicated.  This was fo r tu i t ous  i n  

t h a t ,  because of the  smll m i s s ,  a l a rge  TCM shor t l y  a f t e r  Venus encounter 

was no t  necessary. Further t he  d i r ec t i on  of the miss was such tha t  the  

.-- -- 
t o  the Lr,,: Venus grav i ty  f i e l d  experienced approaching and leaving 
p lane t ,  t he  s t a t ,  of the spacecraf t  was determined very accurately 

; with in  less than i km i n  the Venus B-plane) . 
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des i red  Mercury aim p o i n t  could  be achieved w i t h  a ' sunl ine '*  TCM or, 

March 16. 

On February 14 t h e  gyros were turned on i n  o r d e r  t o  test t h e  c o n d i t i m s  

under which t h e  January 28 f a i l u r e  Lad occurred.  The o s c i l l a t i o n s  again  

-6 appeared and another  s p a c e c r a f t  a c c e l e r a t i o n  r e s u l t e d  (1.75 x 1 0  m/ s e c  
2 

f o r  20 min.) . It was then decidcd n o t  t o  a t tempt  a f u l l  maneuver but  t o  use t h e  

s u n l i n e  TCM on March 16. 

Figure  6 is a con t inua t ion  of Figure  4 showing t h e  r a d i a l  nongravi- 

t a t i o n a l  a c c e l e r a t i o n  from TCMl through t h e  Mercwy encounter .  It was 

cons t ruc ted  by j o i n i n g  5 d i f f e r e n t  O.D. f i t s  (da ta  a r c s  s t a r t i n g  a t  each 

TCM and a t  t h e  l a r g e  anomalies of January 28  and February 1 4 ) .  TI a d d i t i o n a l  

peaks a r e  noted.  Peaks marked 7 and 8 on days 107 and 123 correspond t o  

' f lyback and sweeps' where t h e  re fe rence  s t a r  was l o s t  and a t t i t u d e  c o n t r o l  

gas was expended i n  the  r e a c q u i s i t i o n  sea rch .  It is s e e n  t h a t  the  l e v e l  

of t h e  s p a c e c r a f t  nongrav i ta t iona l  a c c e l e r a t i o n s  is genera l ly  h igher  a f t e r  

t h e  January 4 peak. 

An example of t h e  e f f e c t  of t h i s  high l e v e l  on t h e  batch f i l t e r  can be 

seen i n  Figure 7 which shows var ious  O.D. s o l u t i o n s  i n  t h e  Mercury B-plane. 

The s o l u t i o n s  l a b e l l e d  1 conta in  d a t a  only n e a r  Venus encoumer  (February 4 ) .  

The s o l u t i o n s  l a b e l l e d  2 and 3 con ta in  d a t a  s t a r t i n g  a f t e r  t h e  February 14 

l e a k  (day 103).  The batch f i l t e r  s o l u t i o n s  a r e  badly s c a t t e r e d  whereas 

* 
The engine nozzle pointed toward t h e  sun i n  t h e  uormal s p a c e c r a f t  c r u i s e  
a t t i t u d e ,  s o  i f  t h e  engine is f i r e d  wi th  no t u r n s ,  t h e  t h r u s t  v e c t o r  
imparted t o  t h e  spacecra f t  is  a long the  sun-spacecraf t  l i n e ,  hence t h e  
name ' s u n l i n e ' .  R a ~ h e r  ,: an t h r e e  degrees o f  freedom, t h e  s u n l i n e  maneuver 

I only has  two: t h e  magnitude of t h e  t h r u s t  and t h e  time t h e  maneuver t akes  place .  
1 The advantage of a s u n l i n e  maneuver was t h a t  t h e  gyros  needed only be turned 

i on f o r  the  few seconds dur ing which the  engine f i r e d ,  r a t h e r  than t h e  hour o r  
: 

. , so needed f o r  a f u l l  maneaver r d t h  t u r n s .  
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t he  sequent ia l  f i l t e r  so lu t ions  c l u s t e r  r e l a t i v e l y  ~ i g h t l y  . Th.2 s c a t t e r  

of t he  batch f i l t e r  so lu t ions  can be a t t r i b u t e d  t o  i ts  i n a b i l i t y  t o  node1 

the  high l eve l  of nongravi ta t ional  acce le ra t ions .  The da t a  spans f o r  

so lu t ions  2 and 3 are indicated i n  Figure 6. It is seen t h a t  so lu t ion  2 

contains peak 7 and so lu t ion  3 contains  both peaks 7 and 8. A s  with TCM2, 

t h e  bes t  o r b i t  used t o  determine t h e  TCM3 parameters w a s  given by the  

sequent ia l  f i l t e r .  

After  TCM3 the  prinrary purpose of o r b i t  determination was t o  accurately 

determine t h e  t r a j e c t o r y  s o  t h a t  t h e  science instruments could ., . pointed 

accurately.  The Mercury flyby was about 160 km from t h e  a i m  po in t ,  w e l l  

wi thin the  sc ience  success zone. 

The spacecraf t  was now i n  an o r b i t  about the  sun with a pe r i sd  twice 

t h a t  of Mercury. This enabled two nore Mercury encounters,  one i n  

September 1974 and one i n  March 1975 before t h e  spacecraf t  a t t i t u d e  cont ro l  

gas was depleted.  The sequent ia l  f i l t e r  was used as w e l l  a s  t h e  batch 

f i l t e r  throughout t h e  remainder of t h e  mission. The performance d i f f e r e n t i a l  

of  the  two f i l t e r s ,  however, was no t  a s  dramatic as tha t  i n  t h e  e a r l y  mission 

described abL-ve. Some navigation r e s u l t s  of t h e  extended mission are given 

i n  References 4 and 6. 

I V .  Conclusions 

The performance of  t he  square root  'mechanized batch-sequential  f i l t e r  

i n  the  navigation of Mariner 10 was impressive. It demonstrated t h a t  t he  

SRIF formulation is  a v i ab l e  one f o r  use i n  mission operat ions and a l s o  t h a t  

a f i r s t  o rder  colored noise  m d e l  adequately descr ibed t h e  NGA e f f e c t s .  
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The sequent ia l  f i l t e r  was heavily used and r e l i e d  upon during the 

ntf-ssion. It is d i f f i c u l t  t o  say what would have t ranspi red  had i t  not  been 1. 
f 

avs - l ab l e ,  o r  a d i f f e r e n t  f i l t e r  mechanization used bur i t  is q u i t e  conceivable 

tha a less accurate  O.D. during the c r i t i c a l  pre-Venus phasc would have 

cawed ii large change i n  the remainder of t h e  mission. Though the  d i r ec t ion  

of t h e  e r r o r  a t  Venus was fo r tu i tous  i n  t h a t  a sunl ine maneuver was possible  

t o  obta in  t h e  desired Mercury del ivery,  a l a rge  e r r o r  a t  Venus would have 

severely degraded the Mercury delivery. mis, i n  turn ,  would havt not only 

degraded the  science re turn  on t h e  f i r s t  Mercury encounter, but could have 

brecluded any fu r the r  Mercury encounters. 

Based on .he success indicated here,  the  square r o J t  sequ,ntial f i l t e r  

w i t b  process noise is now a t e s t ed ,  accepted too l  f o r  in te rp lane tary  o r b i t  

determination. Essent ia l ly  the  same . . l t e r  with some added c a p a b i l i t i e s  

(e. g. , var iab le  batch s i z e s ,  a b i l i t y  t o  m d e l  white noise a s  wel l  a s  

c ~ l o r e t l  noise,  smothed  covariances, and smoothed s e n s i t i v i t i e s  w i l l  be used 

i n  the upcwttzg Viking mission t o  Mars. This state-of-the-art  es t imation 

~ c h a n i z a t i o n  is described i n  Reference 1. 
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Table I 

Venus Preencounter Er ro r  Budget 

1 Sigma E r r o r  E l l i p s e  
i n  t h e  B-plane (km) E r r o r  Source 

SMAA SMIA 
1 8  x 2 1. Data Noise 

2. Ephemeris 9 x 5 

?. ESLE 38 x 5 

5. T o t a l  99 x 36 

(SMAA - semimajor a x i s ,  SMIA - semiminor a x i s )  

Table I1 

Mercury Preencounter E r r o r  Budget - 
1 Sigma E r r o r  E l l i p s e  

i n  t h e  B-plane (km) E r r o r  Source 

SMAA SMIA 
10 x 7 1. Data Noise 

2. Ephemeris 65 x 42 

3 .  ESLE 20 x 8 

4. NGA 159 x 120 

5. T o t a l  172 x 129 
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Fig. 1.  Projection of the Earth t o  Mer- 
cury trajectory into  the e c l i p t i c  plane 
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Fig. 2. Tf ne h i s t o r y  o f  so lut ions  i n  the 
Venus B- plane: batch f i l t e r  
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Fig.  3 .  Time h i s tory  o f  s o l u t i o n s  i n  the 
Venus B-plane: sequential  f i l t e r  
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Fig. 4. Spacecraft 
accelerations along 
the line of sight be- 
tween TCMl and TCX2 
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Fig. 5 .  Venus approach short arc solutions 
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Fig. 6. Spacecraft accelerations alon): 

the l i n e  o f  sight 
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Figure 7 .  Batch f i l t e r  vs sequentia 
i n  the Mercury B-plane 
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Data is accumulated i n  t h e  f i r s t  batch; a p r i o r i  s t a t i s t i c s  on x and p  a r e  

added; and a  Householder t r i a n g u l a r i z a t i o n  is performed t o  o b t a i n  the  d a t a  equat ion 

To map from j t o  j+l simply s o l v e  Equation A . l  f o r  El, 
y i e l d i n g  

S u b s t i t u t i n g  (A.3) i n t o  (A.2) and add ing  t h e  a p r i o r i  s t a t i s t i c s  on w 
j +l 

y i e l d s  on t h e  l e f t  hand s i d e  of t h e  d a t a  equat ion 
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where the  (1,3) term is t h e  negat ive of t he  (1, l )  term a s  ind ica ted .  

A Householder transformation is  performed t o  ob ta in  

where primes denote the  new values. 

Now, t h e  upper row of (A.4) is saved f o r  smoothing. The remaining 

three  rows a r e  augmented by da ta  i n  t he  j+lst batch and t r iangular ized  again 

by a Householder process. This equat ion then replaces  (A.2) and the  :.recess 

repeats .  

I n  o rde r  t o  obtain equations f o r  smoothed es t imates ,  t h e  f i r s t  row of 

(A.4) is solved f o r  w (assuming zero es t imate  f o r  the  da t a  equat ion noise) 

t o  obtain:  

From (A.1) 

Also from (A. 1)  
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Equations (A.5) and (A.6) form a backwards recursion for x* and p* 

that,  i f  started w3th the f ina l  f i l t ered  estimates (which are,  by def in i t ion ,  

smoothed estimates),  y i e ld  smoothed estimates for each batch. 
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